Analysing farmland rental rates using Bayesian geoadditive quantile regression

نویسندگان

  • Alexander März
  • Nadja Klein
  • Thomas Kneib
  • Oliver Mußhoff
چکیده

Empirical studies on farmland rental rates have predominantly concentrated on modelling conditional means using spatial autoregressive models, where a linear functional form between the response and the covariates is usually assumed. However, if it is in fact non-linear, misspecifying the functional form can adversely affect inference. While mean regression models only allow limited insights into the way covariates influence the response, extending the analysis to the modelling of conditional quantiles can give a more detailed picture of the conditional distribution. Based on data from the German agricultural census, this article contributes to the agricultural literature by modelling conditional quantiles of farmland rental rates semi-parametrically using Bayesian geoadditive quantile regression models. The flexibility of this model class overcomes the problems associated with functional form misspecifications and allows us to present a more detailed analysis. Our results stress the importance of making use of semi-parametric regression models as several covariates influence farmland rental rates in an explicit non-linear way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

Bayesian semiparametric additive quantile regression

Quantile regression provides a convenient framework for analyzing the impact of covariates on the complete conditional distribution of a response variable instead of only the mean. While frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formulation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields po...

متن کامل

Bayesian Quantile Regression with Adaptive Elastic Net Penalty for Longitudinal Data

Longitudinal studies include the important parts of epidemiological surveys, clinical trials and social studies. In longitudinal studies, measurement of the responses is conducted repeatedly through time. Often, the main goal is to characterize the change in responses over time and the factors that influence the change. Recently, to analyze this kind of data, quantile regression has been taken ...

متن کامل

Bayesian regularisation in geoadditive expectile regression

Abstract Regression classes modeling more than the mean of the response have found a lot of attention in the last years. Expectile regression is a special and computationally convenient case of this family of models. Expectiles offer a quantile-like characterisation of a complete distribution and include the mean as a special case. In the frequentist framework the impact of a lot of covariates ...

متن کامل

Farmland Rental and Productivity of Wheat and Maize: An Empirical Study in Gansu, China

The rapid growth of farmland rental markets in China raises questions about the association of farmland rental and agricultural productivity. Although this issue has been extensively studied, the majority of studies have focused on yields and technical efficiency, with input use and cost efficiency receiving little attention. This study aimed to determine the statistical association of wheat an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014